Dépollution d'une eau contaminée à partir de billes magnétiques

Thème de l'année : La ville

Figure I – Solution de bleu de méthylène avant et après action des billes magnétiques dépolluantes

Augustin BRUN

Contexte scientifique

Introduction

Problématique

Comment former **des billes magnétiques** à partir de ferrofluide ? Dans quelle mesure peut-on alors utiliser ces billes magnétiques pour **décontaminer une eau polluée** par du bleu de méthylène, de la fluorescéine ou des ions cuivre (II) ?

Objectifs

Former des billes magnétiques dépolluantes

Comprendre les phénomènes intervenant dans l'adsorption et la séparation magnétique

Tester et évaluer leur **capacité de dépollution** sur différentes molécules

Figure 3 – Séparation magnétique

2.

3.

Plan

Synthèse du ferrofluide

$$2Fe_{(aq)}^{3+} + Fe_{(aq)}^{2+} + 8NH_{3(aq)} + 4H_2O_{(l)} = Fe_3O_{4(s)} + 8NH_{4(aq)}^+$$

Réactifs	Concentration (mol.L ⁻¹)	Volume (mL)	Quantité de matière (mol)	Equivalents
FeCl ₂	2	5	1*10 ⁻²	1
FeCl ₃	1	20	2*10 ⁻²	2
NH ₃	1	240	0,24	/

Figure 4 – Obtention de $Fe_3O_{4(s)}$

magnétisation

A) 1.Formation des billes magnétiques 2. 3. B) C) D)

A.2

Formation des billes magnétiques

Figure 7 – Ferrofluide obtenu

Figure 8 – Etapes de manipulation

A) 1. 2. Formation des billes magnétiques 3. B) C) D)

A.2

Obtention des billes magnétiques

Figure 9 - Schéma bille magnétique

Obtention de billes magnétiques :

Diamètre : 2-3 mm Propriétés magnétiques Fragilité de certaines billes

Figure 10 -Billes magnétiques dépolluantes obtenues

Explication de la structure des billes : utilisation de l'alginate

A) 1. 2. 3. Structure des billes magnétiques B) C) D)

A.3

Principe de dépollution avec billes magnétiques

4.3

Dépolluant Structure graphite avec forte porosité

Adsorption des polluants par création d'interactions
 → surface spécifique

Modélisation d'une eau polluée par du bleu de méthylène

Réalisation de la courbe d'étalonnage du bleu de méthylène

A) B) 1. 2. Etalonnage 3. 4. 5. C) D)

Première tentative de dépollution (du bleu de méthylène)

Suivi de l'absorbance après ajout des billes dépolluantes

A) B) 1. 2. 3.1^{ère} tentative 4. 5. C) D)

A) **B)** 1. 2. 3. **4.2^{ème} tentative** 5. C) D)

Deuxième tentative de dépollution (du bleu de méthylène)

Figure 19 – Evolution temporelle des spectres d'absorption de l'eau polluée après ajout de billes dépolluantes

B.5

Cinétique : mécanisme d'adsorption

Bilan dépollution Durée de dépollution : 190 minutes Taux de dépollution :

η = 93 %

Quantité de polluant retiré: 1,230 ± 0,019 µmol **B.**5

Cinétique : mécanisme d'adsorption

A) B) 1. 2. 3. 4. 5. Analyse des résultats 5. C) D)

A) B) 1. 2. 3. 4. 5. Analyse des résultats C) D)

Modélisation d'une eau polluée par une solution de fluorescéine

C.1

Figure 21 – Structure de la fluorescéine

Figure 24 – Solution de fluorescéine à 5,27×10⁻⁶ mol.L⁻¹

Tentative de dépollution de la fluorescéine

A) B) C) 1. 2.Dépollution 3. D)

Cinétique d'adsorption – mécanisme limite

A) B) C) 1. 2. 3. Analyse des résultats D)

C.3

21/25

••

•

5000

Cinétique : mécaniste d'adsorption

Mécanisme limite : Pseudo-ordre 2

C.3

$$\frac{dA(t)}{dt} - k_2 A^2(t) = 0$$

Etape rapide

Etape cinétiquement déterminante

$$F_{sol} = F_{ads} \gg K = \frac{a(F_{ads})c^0}{[F_{sol}]}$$

 $F_{sol} + F_{ads} = 2F_{ads}$ $v = k * a(F_{ads})[F_{sol}]$

 $v = k_{app} \, [F_{sol}]^2$

Modélisation d'une eau polluée par une solution d'ions cuivre II

Figure 31 – Solution avec billes magnétiques

Figure 32 – Prélèvement magnétique

4.

D.1

A) B) C) D) 1. 2. Analyse des résultats

CONCLUSION

Figure 33 – Billes magnétiques

Synthèse de ferrofluide et réalisation de billes magnétiques

Dépollution de solutions contaminées par des molécules organiques et des ions métalliques

Assainissement d'une eau contaminée en milieu urbain

Perspectives

Régénérer des billes magnétiques

Etudier de l'influence de paramètres (pH, ...)

[1] : Microencapsulation of riboflavin using alginate and chitosan -YC. Danarto, Rochmadi Rochmadi

[2] : Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange -Marion Bruchet, Artem Melman

[3] : Les charbons actifs pour le traitement des eaux usées Valérie Jeanne-Rose, Axelle Durimel, Nady Passé-Courtin et Sarra Gaspard

[4] : Wikipédia

Données Diagramme E-pH réaction magnétite

Ferrofluide – Partie 2 : synthèses en milieu aqueux et organique pour la génération d'instabilités magnétiques -

Code python

import numpy as np import matplotlib.pyplot as plt

Données

A absorbance à lambda max (autour de 660 nm)

A = np.array([1.28199, 1.23409, 1.16544, 1.10561, 1.04398, 1.00063, 0.933917, 0.88345, 0.838395, 0.792617, 0.710275, 0.654719, 0.621598, 0.570958, 0.484048, 0.447425, 0.368547, 0.331148, 0.30528, 0.27876, 0.253224, 0.253212, 0.232915, 0.2200689697, 0.196507, 0.184531, 0.171943, 0.165869, 0.145492, 0.134186, 0.124923, 0.111683, 0.0919732])

temps : (en minutes) t = np.array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 150, 160, 170, 180, 195])

Incertitudes-type sur les mesures

```
deltaA = 0.05
u_A = deltaA * np.sqrt(3)
deltat = 1
u t = deltat * np.sqrt(3)
```

Données Code python

```
## Tracé graphique avec barres d'incertitudes
plt.errorbar(t,A,xerr=u_t,yerr=u_A,fmt='bo')
plt.xlabel("t / min")
plt.ylabel("A")
plt.title("Tracé de l'absorbance en fonction du temps")
plt.grid()
plt.show()
```

Régression linéaire et tracés des résidus et des écarts normalisés a, b = np.polyfit(t,np.log(A),1) # a est la pente et b est l'ordonnée à l'origine

```
print("Les paramètres de la régression linéaire valent :")
print("Pente : a = ",a,"1/min")
print("Ordonnée à l'origine : b = ",b)
```

```
# Graphe : régression linéaire et mesures
plt.plot(t, b + a*t, 'r', label='Régression linéaire')
plt.errorbar(t,np.log(A), xerr=u_t, yerr=u_A,fmt='bo',label='Mesures')
# Attention à bien tracer les incertitudes-types
plt.legend()
plt.grid()
plt.xlabel("t / min")
plt.ylabel("A")
plt.title("Régression linéaire")
```

Données

Code python

Obtention des incertitudes-type sur les paramétres de la régression linéaire ## ------

Nombre de simulations

N = 10000

Initialisation des listes de flottants contenant a et b

```
a_sim,b_sim = np.array([0.]*N), np.array([0.]*N)
```

Simulation Monte Carlo

```
for i in range(N):
# Simulation du temps et des absorbances suivant une loi uniforme et régression linéaire
t_sim = t + u_t*np.sqrt(3)*np.random.uniform(-1, 1, len(t))
A_sim = np.log(A) + u_A*np.sqrt(3)*np.random.uniform(-1,1,len(A))
a_sim[i],b_sim[i] = np.polyfit(t_sim,A_sim,1)
```

```
print("Incertitudes-type :")
u_a,u_b = np.std(a_sim, ddof=1),np.std(b_sim, ddof=1)
```

```
print("Pente : u(a) = ",u_a,"1/min")
print("Ordonnée à l'origine : u(b) = ",u_b)
```

Données Ecarts normalisés et résidus

Bleu de méthylène

Données Ecarts normalisés et résidus

Fluorescéine

Données Calcul des constantes d'équilibre $E^{\circ}_{Cu^{2+}/Cu^{+}} = 2,4 \text{ V}$ $E^{\circ}_{I_{2}/I^{-}} = 0,621 \text{ V}$ $E^{\circ}_{Cu^{2+}/CuI} = 0.82 \text{ V}$ $E^{\circ}_{S_4 O_6^{2^-}/S_2 O_3^{2^-}} = 0.08 \text{ V}$ pKs_{CuI} = 11.96 $Cu^{2+} + I^{-} = Cu^{+} + \frac{1}{2}I_2$ (1) $K_1 = 1.4.10^{30}$ $Cu^+ + I^- = CuI$ (2) $K_2 = 9.1.10^{11}$ $Cu^{2+} + 2I^{-} = CuI + \frac{1}{2}I_2$ (1) + (2) $K = K_1 \cdot K_2 = 1,3.10^{42}$ $(Cu^{2+} + \frac{5}{2}I^{-} = CuI + \frac{1}{2}I_{3}^{-})$

 $2S_2O_3^{2-} + I_2 = S_4O_6^{2-} + 2I^ (2S_2O_3^{2-} + I_3^- = S_4O_6^{2-} + 3I^-)$

$$K_{titrage} = 2,2.10^{18}$$

Données Calcul d'incertitude titrage du cuivre

$$\frac{u(c_0)}{c_0} = \sqrt{\left(\frac{u(c)}{c}\right)^2 + \left(\frac{u(V_{eq})}{V_{eq}}\right)^2 + \left(\frac{u(V_0)}{V}\right)^2} = 6,658 * 10^{-3} \text{ pour la solution témoin} = 2,047 * 10^{-2} \text{ pour la solution dépolluée}$$

Car
$$c_0 = rac{c * V_{eq}}{V_0}$$

$$v_{0}$$

$$u(V_{eq}) = \frac{\sqrt{\Delta(burette)^{2} + \Delta(lecture)^{2}}}{\sqrt{3}} = 4,099 * 10^{-2} \text{ m}$$

$$\frac{u(c)}{c} = \sqrt{\left(\frac{u(m)}{m}\right)^{2} + \left(\frac{u(V_{1})}{V_{1}}\right)^{2}} \quad \text{Car} \quad c = \frac{m}{V_{1} * M}$$

$$\frac{u(n)}{n} = \sqrt{\left(\frac{u(c_0)}{c_0}\right)^2 + \left(\frac{u(V_0)}{V_0}\right)^2}$$

= $6,757 * 10^{-3}$ pour la solution témoin = $2,05 * 10^{-2}$ pour la solution dépolluée